Magnetic nanoparticles
Nanoscale Processing, Page: 197-236
2021
- 11Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Magnetic nanoparticles (MNPs) have widespread attention because of their unique features. For a few decades, growing development in chemical synthesis of nanomaterials and material surface modification have been seen and performed in numerous applications including biomedicine, biotechnology, catalysis, magnetic chemistry thermoelectric materials, etc. Various methods for fabrication of MNPs which have a controllable size, distribution, and surface modification have been reported. In these methods, several techniques containing irradiation, microwave, ultrasonication, vapor deposition, electrochemical, and microwave are applied to produce MNPs either in bottom-up or top-down processes. Generally, magnetic synthesis of nanoparticles is carried out by using these two processes. Nanomaterials with magnetic properties have wide applications in many fields such as biology, medicine, and engineering. In this section, the recent developments in the structures, occurrences, most commonly used samples, and common areas of use of the MNPs are given.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/B9780128205693000086; http://dx.doi.org/10.1016/b978-0-12-820569-3.00008-6; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124172652&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/B9780128205693000086; https://dx.doi.org/10.1016/b978-0-12-820569-3.00008-6
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know