Recent NMR Studies of Thermoelectric Materials
Annual Reports on NMR Spectroscopy, ISSN: 0066-4103, Vol: 92, Page: 137-198
2017
- 13Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Thermoelectric materials can directly convert heat to electricity and are expected to lead to new devices to harvest waste heat for energy efficiency as well as new cooling technologies. Optimization of these properties requires tailoring vibrational properties as well as the entropy carried by electrical charges and spins. NMR measurements have been important for understanding these processes, providing a measure of anharmonic “rattling” phonon behavior, local fluctuations in charge carrier and magnetic properties, and atomic-scale symmetries and distortions within these materials. Here we report recent NMR results focusing on inorganic clathrates, skutterudites, oxides, noble metal chalcogenides, complex tellurides, and half-Heusler compounds in which high thermoelectric efficiencies have been reported.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0066410317300133; http://dx.doi.org/10.1016/bs.arnmr.2017.04.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020832498&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0066410317300133; https://dx.doi.org/10.1016/bs.arnmr.2017.04.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know