A fluorescence polarization assay using an engineered human respiratory syncytial virus F protein as a direct screening platform
Analytical Biochemistry, ISSN: 0003-2697, Vol: 409, Issue: 2, Page: 195-201
2011
- 12Citations
- 70Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef11
- Captures70
- Readers70
- 36
- 34
Article Description
Human respiratory syncytial virus (hRSV) typically affects newborns and young children. Even though it can cause severe and, in some cases, lifelong respiratory infections, there are currently no Food and Drug Administration (FDA)-approved therapeutics that control this virus. The hRSV F protein facilitates viral fusion, a critical extracellular event that can be targeted for therapeutic intervention by disrupting the assembly of a postfusion 6-helix bundle (6HB) within the hRSV F protein. Here we report the development of a fluorescence polarization (FP) assay using an engineered hRSV F protein 5-helix bundle (5HB). We generated the 5HB and validated its ability to form a 6HB in an FP assay. To test the potential of 5HB as a screening tool, we then investigated a series of truncated peptides derived from the “missing” sixth helix. Using this FP-based 5HB system, we have successfully demonstrated that short peptides can prevent 6HB formation and serve as potential hRSV fusion inhibitors. We anticipate that this new 5HB system will provide an effective tool to identify and study potential antivirals to control hRSV infection.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0003269710006767; http://dx.doi.org/10.1016/j.ab.2010.10.020; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78650510640&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/20971054; https://linkinghub.elsevier.com/retrieve/pii/S0003269710006767
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know