An abiotic carbon dots@ ZIF-90 fluorescent probe for rapid and reliable detection of adenosine triphosphate
Analytical Biochemistry, ISSN: 0003-2697, Vol: 663, Page: 115021
2023
- 3Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
ATP is a high-energy compound that plays a vital role in biological metabolism. Abnormal changes in ATP concentration are related to various diseases and reflect microbial metabolism in biofilms. In this work, we prepared carbon quantum dots (CDs) with aggregation-induced fluorescence inhibition effect using the bacterial culture medium as raw material with a hydrothermal method. Then, an abiotic fluorescent nanoprobe named CDs@zeolitic imidazolate frameworks-90 (ZIF-90) was facilely synthesized by encapsulating CDs into ZIF-90. Owing to the encapsulation of CDs in the hollow structure of ZIF-90, the blue fluorescence emission of CDs@ZIF-90 decreased significantly. In the presence of ATP, the ZIF-90 framework was destroyed due to the strong coordination between ATP and Zn 2+. The released CDs exhibited stronger fluorescence intensity, which was closely related to the ATP concentration. The convenient synthesis process and rapid ATP-responsive ability make CDs@ZIF-90 highly promising for clinical and environmental analysis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S000326972200481X; http://dx.doi.org/10.1016/j.ab.2022.115021; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85144294173&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36539047; https://linkinghub.elsevier.com/retrieve/pii/S000326972200481X; https://dx.doi.org/10.1016/j.ab.2022.115021
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know