Rolling circle transcription/G-quadruplex/QnMorpholine probe for highly selective and sensitive detection of alkaline phosphatase activity
Analytical Biochemistry, ISSN: 0003-2697, Vol: 665, Page: 115050
2023
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, we combined a rolling circle transcription (RCT) system producing 22AG G-quadruplex RNA with a QnMorpholine (QNM) fluorescent probe for the selective and sensitive detection of alkaline phosphatase (ALP). ALP is involved in various biological functions, with monophosphate cleavage being one of its characteristic properties. Here, we developed a padlock RCT probing system in which a large amount of RCT 22AG RNA G-quadruplex was produced in the absence of ALP, providing a high fluorescence signal. In contrast, no RNA G-quadruplex was produced in the presence of ALP, with minimal fluorescence. This huge deviation in signal intensity allowed us to identify the presence or absence of ALP in a test sample. Under practical conditions, our system allowed the differentiation for ALP even when it was present at an extremely low concentration (0.0085 U/L), along with very high specificity. The simplicity and efficiency of this approach for ALP detection suggest its potential for use as a reliable diagnostic tool.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0003269723000155; http://dx.doi.org/10.1016/j.ab.2023.115050; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85146550576&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36681138; https://linkinghub.elsevier.com/retrieve/pii/S0003269723000155; https://dx.doi.org/10.1016/j.ab.2023.115050
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know