Biosynthesis, processing, and sorting of human myeloperoxidase
Archives of Biochemistry and Biophysics, ISSN: 0003-9861, Vol: 445, Issue: 2, Page: 214-224
2006
- 188Citations
- 114Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations188
- Citation Indexes188
- 188
- CrossRef165
- Captures114
- Readers114
- 114
Review Description
Exclusively synthesized by normal neutrophil and monocyte precursor cells, myeloperoxidase (MPO) functions not only in host defense by mediating efficient microbial killing but also can contribute to progressive tissue damage in chronic inflammatory states such as atherosclerosis. The biosynthetic precursor, apoproMPO, is processed slowly in the ER, undergoing cotranslational N-glycosylation, transient interactions with the molecular chaperones calreticulin and calnexin, and heme incorporation to generate enzymatically active proMPO that is competent for export into the Golgi. After exiting the Golgi the propeptide is removed prior to final proteolytic processing in azurophil granules, resulting in formation of a symmetric MPO homodimer linked by a disulfide bond. Some proMPO escapes granule targeting and becomes constitutively secreted to the extracellular environment. Although the precise mechanism is unknown, the pro-segment is required for normal processing and targeting, as propeptide-deleted MPO precursor is either degraded or constitutively secreted. Characterizing the molecular consequences of naturally occurring mutations that cause inherited MPO deficiency provides unique insight into the structural determinants of MPO involved in biosynthesis, processing and targeting.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0003986105003516; http://dx.doi.org/10.1016/j.abb.2005.08.009; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=30544452175&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/16183032; https://linkinghub.elsevier.com/retrieve/pii/S0003986105003516; https://dx.doi.org/10.1016/j.abb.2005.08.009
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know