Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth
Analytica Chimica Acta, ISSN: 0003-2670, Vol: 1170, Page: 338630
2021
- 59Citations
- 59Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations59
- Citation Indexes59
- 59
- CrossRef18
- Captures59
- Readers59
- 59
Article Description
Smartphone-assisted point-of-care (POC) bioassay has brought a giant leap in personal healthcare system and environmental monitoring advancements. In this study, we developed a rapid and reliable colorimetric urea biosensor assisted by a smartphone. We employed hydrolysis of urea into NH 3 by urease, which activates the reduction power of tannic acid, to generate silver nanoparticles for a dramatic colorimetric response. The proposed urea biosensor was validated in a solution to provide high selectivity against various interferents in human urine. It had high sensitivity, with a limit of detection as low as 0.0036 mM, and a high reliability of 99% ± 2.9% via the standard addition method. The urea biosensor was successfully implanted on a paper to facilitate smartphone-assisted POC readout with a limit of detection of 0.58 mM and wide detection range of 500 mM, whereby direct diagnosis of human urine without dilution was realized. Our smartphone-assisted POC colorimetric urea biosensor will pave the way for daily monitoring systems of renal and hepatic dysfunction diseases.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0003267021004566; http://dx.doi.org/10.1016/j.aca.2021.338630; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106357893&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34090590; https://linkinghub.elsevier.com/retrieve/pii/S0003267021004566; https://dx.doi.org/10.1016/j.aca.2021.338630
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know