Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals
Acta Materialia, ISSN: 1359-6454, Vol: 56, Issue: 15, Page: 4046-4061
2008
- 119Citations
- 137Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A full rate-dependent constitutive theory for dynamic strain aging is developed based on two key ideas. The first idea is that both solute strengthening and forest strengthening must exist and must exhibit aging phenomena. The second idea is that a single physical aging mechanism, cross-core diffusion within a dislocation core, controls the aging of both the solute and forest strengthening mechanisms. All the material parameters in the model, apart from forest dislocation density evolution parameters, are derivable from atomistic-scale studies so that the theory contains essentially no adjustable parameters. The model predicts the steady-state stress/strain/strain-rate/temperature/concentration dependent material response for a variety of Al–Mg alloys, including negative strain-rate sensitivity, in qualitative and quantitative agreement with available experiments. The model also reveals the origin of non-additivity of solute and forest strengthening, and explains observed non-standard transient stress behavior in strain-rate jump tests.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359645408003029; http://dx.doi.org/10.1016/j.actamat.2008.04.027; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=48449094762&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359645408003029; https://dx.doi.org/10.1016/j.actamat.2008.04.027
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know