Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys
Acta Materialia, ISSN: 1359-6454, Vol: 127, Page: 54-72
2017
- 55Citations
- 56Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We investigate the synergistic effects of texture and intrinsic plastic anisotropy (at the level of single crystal) on the deformation of polycrystalline magnesium using three-dimensional crystal plasticity finite element simulations. Using rolled plate texture as a basis, we simulate the deformation using a range of synthetic textures. Smooth and notched round bar specimens are considered to achieve different levels of stress triaxiality. Two sets of constituent single crystal properties, representative of an Mg alloy and pure Mg respectively, are adopted in order to investigate the role of intrinsic plastic anisotropy. Our results reveal that textural variations couple into the intrinsic plastic anisotropy and triaxiality to determine the active deformation mechanisms. When loaded along the rolling direction of the plate, the deformation is accommodated by prismatic slip at low triaxiality and pyramidal 〈c+a〉 slip at high triaxiality. Softer mechanisms such as basal slip and extension twinning, which are not favored by the loading orientation, are activated due to the intergranular stresses. The smooth specimens show macroscopic strain localization the onset of which depends on initial texture. The deformed textures are strongly modulated by both triaxiality and intrinsic plastic anisotropy. We also briefly discuss the potential role of twinning in damage evolution.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359645417300253; http://dx.doi.org/10.1016/j.actamat.2017.01.015; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85009834004&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359645417300253; https://dx.doi.org/10.1016/j.actamat.2017.01.015
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know