X-ray characterization of the micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy
Acta Materialia, ISSN: 1359-6454, Vol: 179, Page: 342-359
2019
- 40Citations
- 83Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The small fatigue crack (SFC) growth regime in polycrystalline alloys is complex due to the heterogeneity in the local micromechanical fields, which result in high variability in crack propagation directions and growth rates. In this study, we employ a suite of techniques, based on high-energy synchrotron-based X-ray experiments that allow us to track a nucleated crack, propagating through the bulk of a Ni-based superalloy specimen during cyclic loading. Absorption contrast tomography is used to resolve the intricate 3D crack morphology and spatial position of the crack front. Initial near-field high-energy X-ray diffraction microscopy (HEDM) is used for high-resolution characterization of the grain structure, elucidating grain orientations, shapes, and boundaries. Cyclic loading is periodically interrupted to conduct far-field HEDM to determine the centroid position, average orientation, and average lattice strain tensor for each grain within the volume of interest. Reciprocal space analysis is used to further examine the deformation state of grains that plasticize in the vicinity of the crack. Analysis of the local micromechanical state in the grains ahead of the crack front is used to rationalize the advancing small crack path and growth rate. Specifically, the most active slip system in a grain, determined by the maximum resolved shear stress, aligns with the crack growth direction; and the degree of microplasticity ahead of the crack tip helps to identify directions for potential occurrences of crack arrest or propagation. The findings suggest that both the slip system level stresses and microplasticity events within grains are necessary to get a complete description of the SFC progression. Further, this detailed dataset, produced by a suite of X-ray characterization techniques, can provide the necessary validation, at the appropriate length-scale, for SFC models.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359645419305075; http://dx.doi.org/10.1016/j.actamat.2019.08.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85071650324&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359645419305075; https://dx.doi.org/10.1016/j.actamat.2019.08.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know