PlumX Metrics
Embed PlumX Metrics

In vitro fatigue behavior and in vivo osseointegration of the auxetic porous bone screw

Acta Biomaterialia, ISSN: 1742-7061, Vol: 170, Page: 185-201
2023
  • 11
    Citations
  • 0
    Usage
  • 31
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The incidence of screw loosening, migration, and pullout caused by the insufficient screw-bone fixation stability is relatively high in clinical practice. To solve this issue, the auxetic unit-based porous bone screw (AS) has been put forward in our previous work. Its favorable auxetic effect can improve the primary screw-bone fixation stability after implantation. However, porous structure affected the fatigue behavior and in vivo longevity of bone screw. In this study, in vitro fatigue behaviors and in vivo osseointegration performance of the re-entrant unit-based titanium auxetic bone screw were studied. The tensile-tensile fatigue behaviors of AS and nonauxetic bone screw (NS) with the same porosity (51%) were compared via fatigue experiments, fracture analysis, and numerical simulation. The in vivo osseointegration of AS and NS were compared via animal experiment and biomechanical analysis. Additionally, the effects of in vivo dynamic tensile loading on the osseointegration of AS and NS were investigated and analyzed. The fatigue strength of AS was approximately 43% lower while its osseointegration performance was better than NS. Under in vivo dynamic tensile loading, the osseointegration of AS and NS both improved significantly, with the maximum increase of approximately 15%. Preferrable osseointegration of AS might compensate for the shortage of fatigue resistance, ensuring its long-term stability in vivo. Adequate auxetic effect and long-term stability of the AS was supposed to provide enough screw-bone fixation stability to overcome the shortages of the solid bone screw, developing the success of surgery and showing significant clinical application prospects in orthopedic surgery. This research investigated the high-cycle fatigue behavior of re-entrant unit-based auxetic bone screw under tensile-tensile cyclic loading and its osseointegration performance, which has not been focused on in existing studies. The fatigue strength of auxetic bone screw was lower while the osseointegration was better than non-auxetic bone screw, especially under in vivo tensile loading. Favorable osseointegration of auxetic bone screw might compensate for the shortage of fatigue resistance, ensuring its long-term stability and longevity in vivo. This suggested that with adequate auxetic effect and long-term stability, the auxetic bone screw had significant application prospects in orthopedic surgery. Findings of this study will provide a theoretical guidance for design optimization and clinical application of the auxetic bone screw.

Bibliographic Details

Wang, Lizhen; Huang, Huiwen; Yuan, Hao; Yao, Yan; Park, Jeong Hun; Liu, Jinglong; Geng, Xuezheng; Zhang, Kuo; Hollister, Scott J; Fan, Yubo

Elsevier BV

Biochemistry, Genetics and Molecular Biology; Materials Science; Engineering

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know