Universal contact stiffness of elastic solids covered with tensed membranes and its application in indentation tests of biological materials
Acta Biomaterialia, ISSN: 1742-7061, Vol: 171, Page: 202-208
2023
- 5Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The inherent membrane tension of biological materials could vitally affect their responses to contact loading but is generally ignored in existing indentation analysis. In this paper, the authors theoretically investigate the contact stiffness of axisymmetric indentations of elastic solids covered with thin tensed membranes. When the indentation size decreases to the same order as the ratio of membrane tension to elastic modulus, the contact stiffness accounting for the effect of membrane tension becomes much higher than the prediction of conventional contact theory. An explicit expression is derived for the contact stiffness, which is universal for axisymmetric indentations using indenters of arbitrary convex profiles. On this basis, a simple method of analysis is proposed to estimate the membrane tension and elastic modulus of biological materials from the indentation load-depth data, which is successfully applied to analyze the indentation experiments of cells and lungs. This study might be helpful for the comprehensive assessment of the mechanical properties of soft biological systems. This paper highlights the crucial effect of the inherent membrane tension on the indentation response of soft biomaterials, which has been generally ignored in existing analysis of experiments. For typical indentation tests on cells and organs, the contact stiffness can be twice or higher than the prediction of conventional contact model. A universal expression of the contact stiffness accounting for the membrane tension effect is derived. On this basis, a simple method of analysis is proposed to abstract the membrane tension of biomaterials from the experimentally recorded indentation load-depth data. With this method, the elasticity of soft biomaterials can be characterized more comprehensively.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1742706123005391; http://dx.doi.org/10.1016/j.actbio.2023.09.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171668687&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37690593; https://linkinghub.elsevier.com/retrieve/pii/S1742706123005391; https://dx.doi.org/10.1016/j.actbio.2023.09.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know