PlumX Metrics
Embed PlumX Metrics

A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures

Additive Manufacturing Letters, ISSN: 2772-3690, Vol: 5, Page: 100128
2023
  • 22
    Citations
  • 0
    Usage
  • 58
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    22
    • Citation Indexes
      22
  • Captures
    58
  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Oak Ridge National Laboratory Researchers Describe Recent Advances in Industrial Engineering (A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures)

2023 APR 06 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- Current study results on industrial engineering have

Article Description

Metal polymer composites combining low density, high strength composites with highly ductile and tough metals have gained traction over the last few decades as lightweight and high-performance materials for industrial applications. However, the mechanical properties are limited by the interfacial bonding strength between metals and polymers achieved through adhesives, welding, and surface treatment processes. In this paper, a novel manufacturing process combining additive manufacturing and compression molding to obtain hybrid metal polymer composites with enhanced mechanical properties is presented. Additive manufacturing enabled deposition of polymeric material with fibers in a predetermined pattern to form tailored charge or preform for compression molding. A grade 300 maraging steel triangular lattice is first fabricated using AddUp FormUp350 laser powder bed system and compression overmolded with additively manufactured long carbon fiber-reinforced polyamide-6,6 (40% wt. CF/PA66) preform. The fabricated hybrid metal polymer composites showed high stiffness and tensile strength. The stiffness and failure characteristics determined from the uniaxial tensile tests were correlated to a finite element model within 20% deviation. Fractographic analyses was performed using microscopy to investigate failure mechanisms of the hybrid structures.

Bibliographic Details

Deepak Kumar Pokkalla; Ahmed Arabi Hassen; David Nuttall; Nikolaos Tsiamis; Mitchell L. Rencheck; Vipin Kumar; Peeyush Nandwana; Chase B. Joslin; Patrick Blanchard; Sangram Laxman Tamhankar; Patrick Maloney; Vlastimil Kunc; Seokpum Kim

Elsevier BV

Engineering; Materials Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know