Moisture sensitivity and compressive performance of 3D-printed cellulose-biopolyester foam lattices
Additive Manufacturing, ISSN: 2214-8604, Vol: 40, Page: 101918
2021
- 9Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Biobased, foam-like polyester composite materials were 3D-printed from a thermoset paste formulation. This paste formulation was composed of sebacic acid, glycerol, citric acid, and cellulose nanocrystals in water and ethanol with potassium chloride as a salt porogen. Thin walls and lattices were 3D-printed with geometry selected to facilitate post-printing processes such as water removal during polyester curing and the post-curing removal of the salt porogen. The compressive performance of these moisture-sensitive lattice structures was investigated after conditioning at different humidity levels and by water immersion. Finite element analysis was used to simulate the compressive performance of these porous lattice structures using a crushable foam material model. Addition of plant triglyceride oils from sunflower and coconut were trialled to modify the compressive performance and moisture sensitivity. Addition of 5 wt% coconut oil to the formulation prior to 3D-printing was found to lower the cured material’s stiffness under dry conditions while increasing the compressive plateau strength of the lattice structures after water immersion.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S221486042100083X; http://dx.doi.org/10.1016/j.addma.2021.101918; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101638322&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S221486042100083X; https://dx.doi.org/10.1016/j.addma.2021.101918
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know