Polymer metallization via cold spray additive manufacturing: A review of process control, coating qualities, and prospective applications
Additive Manufacturing, ISSN: 2214-8604, Vol: 48, Page: 102459
2021
- 79Citations
- 154Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Polymer metallization via cold spray additive manufacturing is an emerging thermal spray approach for deposition of thick metallic coatings on polymers and fiber-reinforced composites that promises high productivity, ecofriendliness, and scalability of the coating process. In polymer metallization via cold spray, solid metallic powder is accelerated by a supersonic stream of preheated gas and propelled toward a polymer substrate, where it is built layer-by-layer via impact-induced heating and particle deformation. Since the pioneering study at Cambridge in 2006, nearly 50 experimental reports on polymer metallization via cold spray have been published, half of which have appeared within the past three years. This review distinguishes cold spray from other thermal spray methods, analyzes the peculiarities of cold spraying on polymers and fiber-reinforced composites, outlines the historical establishment of the field, and summarizes the available literature on polymer metallization via cold spray. The major focus here is on the influence of the cold spray process parameters on the deposition efficiency, adhesion strength, electrical conductivity and other properties of metallic coatings formed on polymers and fiber-reinforced composites. The promising applications of cold spray additive manufacturing in lightning strike protection, electroplating, osseointegration, antifouling, antivirus, e.g. anti-Covid-19 surfaces, and other surface functionalizations have been reviewed. Finally, recommendations were given on how to enhance the data reuse in future studies on polymer metallization via cold spray.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214860421006102; http://dx.doi.org/10.1016/j.addma.2021.102459; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118719595&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214860421006102; https://dx.doi.org/10.1016/j.addma.2021.102459
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know