Cross-attentional subdomain adaptation with selective knowledge distillation for motor fault diagnosis under variable working conditions
Advanced Engineering Informatics, ISSN: 1474-0346, Vol: 62, Page: 102948
2024
- 1Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
Motor fault diagnosis under variable working conditions is an open challenge for practical application. Domain adaptation has been explored for reducing feature distribution discrepancy across working conditions. However, existing methods overlook the relations and the domain-related features among individual sample pairs across different domains, and the quality of pseudo labels significantly limits the subdomain adaptation performance. To tackle these limitations, a cross-attentional subdomain adaptation (CroAttSA) method with clustering-based selective knowledge distillation for motor fault diagnosis under variable working conditions is proposed. A triple-branch transformer with self-attention and cross-domain-attention is designed for domain-specific and domain-correlated feature extraction. Additionally, a correlated local maximum mean discrepancy (CLMMD) loss is introduced for more fine-grained and fault-related subdomain adaptation. A clustering-based selective knowledge distillation strategy is also proposed to improve the quality of the pseudo labels for enhanced model performance. Extensive experiments on motor fault diagnosis under variable loads and rotating speeds are conducted, and the comparison and ablation study results have verified the model effectiveness.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know