PlumX Metrics
Embed PlumX Metrics

Revealing irrigation uniformity with remote sensing: A comparative analysis of satellite-derived uniformity coefficient

Agricultural Water Management, ISSN: 0378-3774, Vol: 301, Page: 108944
2024
  • 1
    Citations
  • 0
    Usage
  • 10
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1
  • Captures
    10
  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

Research Conducted at Federal University Vicosa Has Provided New Information about Sustainability Research (Revealing Irrigation Uniformity With Remote Sensing: a Comparative Analysis of Satellite-derived Uniformity Coefficient)

2024 AUG 02 (NewsRx) -- By a News Reporter-Staff News Editor at Economics Daily Report -- Investigators publish new report on Sustainability Research. According to

Article Description

This study investigates the use of satellite-derived Christiansen Uniformity Coefficient (SDCUC) values for evaluating irrigation uniformity. In the context of global water scarcity and the imperative for sustainable water management, we explore the potential of remote sensing methods to evaluate irrigation uniformity across large agricultural areas. The findings reveal a consistent tendency for SDCUC to overestimate irrigation uniformity, with an average overestimation rate of 7.83 %. However, accuracy improved with the appropriate method, vegetation index, or spectral band selection. Employing the entire satellite image for SDCUC (SDCUC TOT ) assessment improved accuracy. For Sentinel-1 (S1), using the dual-band cross-polarization horizontal transmit/vertical receive band (VH), the bias confidence interval was −0.39–0.69 %, while for Sentinel-2 (S2), using the normalized difference red edge 3 index (NDRE3), it was −1.47–0.66 %, and for Landsat 8 (L8) and Landsat 9 (L9) using the shortwave infrared water stress index (SIWSI) it ranged from 0.36 % to 2.28 %. Improved results were also observed when the normalized difference vegetation index (NDVI) ranged between 0.4 and 0.8 or the evapotranspiration and potential evapotranspiration ratio (ET/PET) ranged between 0.30 and 0.55. In these conditions, SDCUC TOT for the S2, L8, and L9 using the simple ratio index (SR) ranged from 1.00 % to 2.33 %, 0.00–1.83 %, 0.23–2.00 %, respectively, and for S2, the normalized difference water index (NDWI) and NDRE3 ranged from −1.39–0.71 %, and −1.43–2.31 % respectively. These findings underscore the potential of remote sensing techniques to revolutionize water resource management and promote sustainable agriculture, emphasizing the synergistic role of ground-based measurements and the need for continued methodological refinements to improve accuracy. Further advancements and research are warranted to refine the methodology and enhance the accuracy and reliability of remote sensing-based irrigation uniformity assessment, ultimately contributing to more sustainable agricultural irrigation practices.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know