Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits
The American Journal of Human Genetics, ISSN: 0002-9297, Vol: 110, Issue: 1, Page: 44-57
2023
- 10Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- CrossRef10
- Captures20
- Readers20
- 20
Article Description
Integrative genetic association methods have shown great promise in post-GWAS (genome-wide association study) analyses, in which one of the most challenging tasks is identifying putative causal genes and uncovering molecular mechanisms of complex traits. Recent studies suggest that prevailing computational approaches, including transcriptome-wide association studies (TWASs) and colocalization analysis, are individually imperfect, but their joint usage can yield robust and powerful inference results. This paper presents INTACT, a computational framework to integrate probabilistic evidence from these distinct types of analyses and implicate putative causal genes. This procedure is flexible and can work with a wide range of existing integrative analysis approaches. It has the unique ability to quantify the uncertainty of implicated genes, enabling rigorous control of false-positive discoveries. Taking advantage of this highly desirable feature, we further propose an efficient algorithm, INTACT-GSE, for gene set enrichment analysis based on the integrated probabilistic evidence. We examine the proposed computational methods and illustrate their improved performance over the existing approaches through simulation studies. We apply the proposed methods to analyze the multi-tissue eQTL data from the GTEx project and eight large-scale complex- and molecular-trait GWAS datasets from multiple consortia and the UK Biobank. Overall, we find that the proposed methods markedly improve the existing putative gene implication methods and are particularly advantageous in evaluating and identifying key gene sets and biological pathways underlying complex traits.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0002929722005365; http://dx.doi.org/10.1016/j.ajhg.2022.12.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85145304680&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36608684; https://linkinghub.elsevier.com/retrieve/pii/S0002929722005365; https://dx.doi.org/10.1016/j.ajhg.2022.12.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know