Computational Pathology for Prediction of Isocitrate Dehydrogenase Gene Mutation from Whole Slide Images in Adult Patients with Diffuse Glioma
The American Journal of Pathology, ISSN: 0002-9440, Vol: 194, Issue: 5, Page: 747-758
2024
- 3Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures7
- Readers7
Article Description
Isocitrate dehydrogenase gene ( IDH ) mutation is one of the most important molecular markers of glioma. Accurate detection of IDH status is a crucial step for integrated diagnosis of adult-type diffuse gliomas. Herein, a clustering-based hybrid of a convolutional neural network and a vision transformer deep learning model was developed to detect IDH mutation status from annotation-free hematoxylin and eosin–stained whole slide pathologic images of 2275 adult patients with diffuse gliomas. For comparison, a pure convolutional neural network, a pure vision transformer, and a classic multiple-instance learning model were also assessed. The hybrid model achieved an area under the receiver operating characteristic curve of 0.973 in the validation set and 0.953 in the external test set, outperforming the other models. The hybrid model's ability in IDH detection between difficult subgroups with different IDH status but shared histologic features, achieving areas under the receiver operating characteristic curve ranging from 0.850 to 0.985 in validation and test sets. These data suggest that the proposed hybrid model has a potential to be used as a computational pathology tool for preliminary rapid detection of IDH mutation from whole slide images in adult patients with diffuse gliomas.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0002944024000397; http://dx.doi.org/10.1016/j.ajpath.2024.01.009; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85190348107&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38325551; https://linkinghub.elsevier.com/retrieve/pii/S0002944024000397; https://dx.doi.org/10.1016/j.ajpath.2024.01.009
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know