Comparison of CRISPR/Cas9 and Cas12a for gene editing in Chlamydomonas reinhardtii
Algal Research, ISSN: 2211-9264, Vol: 84, Page: 103796
2024
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
CRISPR/Cas-based technologies have revolutionized biology, offering a wide range of gene editing and engineering applications due to their diverse enzyme characteristics. Among the CRISPR/Cas nucleases, Cas9, and more recently, Cas12a (formerly known as Cpf1), have been employed in various gene editing applications in many eukaryotes, including the model green alga Chlamydomonas reinhardtii. To provide a comprehensive picture of their applicability in single-strand templated DNA repair and gene editing, we first mapped their targeting space by analysing their corresponding PAM frequencies, and then compared Cas9 and Cas12a activities by targeting overlapping regions at three independent loci in the Chlamydomonas genome. We identified 8 and 32 times more target sites for Cas9 compared to Cas12a within promoter regions and coding sequences, respectively. We found that Cas9 and Cas12a RNPs- co-delivered with ssODN repair templates- induced similar levels of total editing, achieving as much as 20–30 % in all viably recovered cells. Importantly, the level of precision editing was slightly higher for Cas12a. In contrast, Cas9 alone was able to induce more edits at the FKB12 locus than its Cas12a counterpart, overall making Cas9 the preferable enzyme for genome engineering among the currently available nucleases in C. reinhardtii.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know