Comparative analysis of alternative random parameters count data models in highway safety
Analytic Methods in Accident Research, ISSN: 2213-6657, Vol: 30, Page: 100158
2021
- 46Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Unobserved heterogeneity has been a major challenge in developing reliable road safety models. A number of statistical techniques have been developed to account for unobserved heterogeneity and of which, the random parameters approach is one of the most effective method and has been frequently used recently. In this study, to ascertain the performance of various methods that can account for unobserved heterogeneity, the following six models in the negative binomial framework were estimated and thoroughly evaluated: 1) a fixed parameters model; 2) a random parameters model; 3) a random parameters model with heterogeneity in means; 4) a random parameters model with heterogeneity in means and variances; 5) a correlated random parameters model; 6) a correlated random parameters model with heterogeneity in means. These models were thoroughly evaluated from several angles including statistical fit, predictability, causality, marginal effects, explanatory power and practicality. Results indicate that: 1) the simple fixed parameters model resulted in reduced statistical fit, relatively inaccurate predictions, restrictive inferences and added risk of biased marginal effects, though the model is simple for application and interpretive analysis; 2) introducing random parameters could improve the goodness-of-fit, prediction accuracy and the ability to uncover causality; 3) compared with a basic random parameters model, considering the heterogeneity in means/variances or correlation of random parameters brought further improvement in statistical fit, predictive performance and causal inferences; 4) estimating complex models with heterogeneity in means/variances or correlated random parameters provided more insights, but at the expense of significant increase in computational cost and less intuitive outputs; 5) using global means of random parameters rather than the simulated observation-specific parameters was more likely to result in biased marginal effects and erroneous safety measures; 6) new insights into safety factors and their interactions were derived. Results from this study are expected to provide safety analysts with additional guidance for choosing appropriate models when unobserved heterogeneity exists. Additionally, the concluded interactions of safety factors can potentially help develop more effective safety measures.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2213665721000026; http://dx.doi.org/10.1016/j.amar.2021.100158; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101170135&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2213665721000026; https://dx.doi.org/10.1016/j.amar.2021.100158
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know