Constrained consistency enforcement in AHP
Applied Mathematics and Computation, ISSN: 0096-3003, Vol: 380, Page: 125273
2020
- 10Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Decision-making in the presence of intangible elements must be based on a robust, but subtle, balance between expert know-how and judgment consistency when eliciting that know-how. This balance is frequently achieved as a trade-off reached after a feedback process softens the tension frequently found between one force steadily pulling towards (full) consistency, and another force driven by expert feeling and opinion. The linearization method, developed by the authors in the framework of the analytic hierarchy process, is a pull-towards-consistency mechanism that shows the path from an inconsistent body of judgment elicited from an expert towards consistency, by suggesting optimal changes to the expert opinions. However, experts may be reluctant to alter some of their issued opinions, and may wish to impose constraints on the adjustments suggested by the consistency-enforcement mechanism. In this paper, using the classical Riesz representation theorem, the linearization method is accommodated to consider various types of constraints imposed by experts during the abovementioned feedback process.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0096300320302423; http://dx.doi.org/10.1016/j.amc.2020.125273; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083326926&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0096300320302423; https://dx.doi.org/10.1016/j.amc.2020.125273
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know