Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme
Antiviral Research, ISSN: 0166-3542, Vol: 154, Page: 124-131
2018
- 50Citations
- 75Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef26
- Captures75
- Readers75
- 75
Article Description
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5′ cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5′ RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0166354217307726; http://dx.doi.org/10.1016/j.antiviral.2018.03.013; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85046039179&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/29680670; https://linkinghub.elsevier.com/retrieve/pii/S0166354217307726; https://dx.doi.org/10.1016/j.antiviral.2018.03.013
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know