A robust strategy for sensor fault detection in nuclear power plants based on principal component analysis
Annals of Nuclear Energy, ISSN: 0306-4549, Vol: 164, Page: 108621
2021
- 13Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The principal component analysis (PCA) method has been widely used in sensor fault detection. However, outliers of training data may affect the projection directions of both principal component (PC) and residual space, thereby reducing the fault detection rate (FDR). The high sensitivity of PCA to random noise in the test data can also lead to an increase in the false alarm rate (FAR). To improve the performance of the PCA, this paper proposes a robust PCA approach for sensor fault detection in nuclear power plants (NPPs). A statistical method based on Euclidean distance is used to clean outliers in the training data pre-processing phase. Subsequently in the fault detection phase, the moving average (MA) filtering method is adopted to process Q -statistic to reduce false alarms caused by random noise in the test data. Simulation and plant signals are used to verify the effectiveness of the proposed method. Finally, comparisons with the conventional PCA, auto-associative kernel regression (AAKR) and multivariate state estimation technique (MSET) highlight the advantages of the proposed method.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306454921004977; http://dx.doi.org/10.1016/j.anucene.2021.108621; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113159646&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0306454921004977; https://dx.doi.org/10.1016/j.anucene.2021.108621
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know