Water dissociation on multimetallic catalysts
Applied Catalysis B: Environmental, ISSN: 0926-3373, Vol: 218, Page: 199-207
2017
- 22Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
DFT based calculations were employed in the study of the dissociation of the water molecule onto copper and nickel (110) and (111) surface models, incorporating two additional metallic elements, because it was found previously that metal alloying leads to strong synergic effects in the catalysis of this reaction. The dissociation reaction was studied on the Pt/Ru/Ni, Pt/Ru/Cu, Rh/Ru/Cu, Ni/Ru/Cu and Al/Zn/Cu combinations, in a total of 25 trimetallic surfaces. Very low activation energy barriers for the dissociation of water were calculated on several of the surface models, suggesting that multimetallic surfaces can be interesting alternatives for catalyzing the dissociation of the water molecule, which is a crucial elementary step in the water gas shift reaction. Encouragingly, the calculations predict a facile dissociation of the water molecule onto the (AlZn)@Cu(111) catalyst model which is in agreement with recent experimental studies where it was found that a Cu 0.5 Zn 0.5 Al 2 O 4 spinel oxide catalyst holds improved activity for the water gas shift reaction.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0926337317305933; http://dx.doi.org/10.1016/j.apcatb.2017.06.050; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85021075968&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0926337317305933; https://dx.doi.org/10.1016/j.apcatb.2017.06.050
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know