What kind of PCFC material physical property values do we need? —From a system efficiency perspective
Applied Energy, ISSN: 0306-2619, Vol: 381, Page: 125132
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Protonic ceramic fuel cells (PCFCs) have garnered significant interest due to their theoretically high fuel utilization and excellent energy efficiency at intermediate temperatures (400–600 °C). While the performance of PCFCs has improved dramatically in recent years, the system electrical efficiency is often lower than the corresponding cell energy efficiency due to energy loss in a PCFC system. This study focuses on achieving >70% system electrical efficiency (lower heating value-LHV) in a H 2 -powered PCFC system. The required property values such as the conductivities and diffusion coefficients of proton and hole in the electrolyte, as well as the exchange current densities and reaction resistances at electrodes are revealed through a validated numerical model compared to the experimental results of a high-performance PCFC. It offers significant empirical insights for advancing high-performance PCFCs capable of achieving >70% system electrical efficiency.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306261924025169; http://dx.doi.org/10.1016/j.apenergy.2024.125132; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85211980017&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0306261924025169; https://dx.doi.org/10.1016/j.apenergy.2024.125132
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know