A lightweight and low-cost liquid-cooled thermal management solution for high energy density prismatic lithium-ion battery packs
Applied Thermal Engineering, ISSN: 1359-4311, Vol: 203, Page: 117871
2022
- 85Citations
- 76Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Upgrading the energy density of lithium-ion batteries is restricted by the thermal management technology of battery packs. In order to improve the battery energy density, this paper recommends an F2-type liquid cooling system with an M mode arrangement of cooling plates, which can fully adapt to 1C battery charge–discharge conditions. We provide a specific thermal management design for lithium-ion batteries for electric vehicles and energy storage power stations. In addition, the influence of the type of liquid cooling system, discharge rate, inlet temperature and flow rate are investigated, along with the effect of cooling plate arrangement on the temperature uniformity, maximum temperature, cooling efficiency factor and comprehensive heat transfer performance of cooling systems. The experimental results showed that the F2-type liquid cooling system has more advantages in cooling efficiency and comprehensive heat transfer performance than other liquid cooling systems. The best arrangement mode is M and the optimal inlet temperature is approximately 18.75 ℃. The upper limits of cooling water rate of flow at different charging and discharging rates are also determined. Cooling water rates of flow should be no less than 6 and 12 L/h when batteries are discharged at the rates of 1 and 2C, respectively.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359431121012953; http://dx.doi.org/10.1016/j.applthermaleng.2021.117871; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121132934&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359431121012953; https://dx.doi.org/10.1016/j.applthermaleng.2021.117871
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know