Numerical study on initiation of oblique detonation wave by hot jet
Applied Thermal Engineering, ISSN: 1359-4311, Vol: 213, Page: 118679
2022
- 17Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Reliable detonation initiation is critical in detonation engines, especially for oblique detonation engines covering a wide range of flight regimes. The widely-studied oblique shock initiation usually leads to a significant variation in initiation length, making it difficult to adapt to the wide range of flight conditions. In this study, hot jets in the induction zone, i.e. behind the oblique shock, are introduced to explore the possibility of jet initiation, providing a potential method for initiation control. Results show that hot jet can decrease the initiation length to achieve rapid initiation and change the wave structure simultaneously, which is attributed to the oblique shock induced by a gaseous wedge. Thermal analyses of jet-initiated ODWs are also conducted through total pressure recovery. Results indicate that jet-initiated ODWs have a slightly better total pressure recovery than the original ODW. Furthermore, the jet angle and position are varied to analyze their effects on the initiation position, which is insensitive to the former while sensitive to the latter. A large jet angle may lead to a strong solution of secondary oblique detonation, which has not been previously reported.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359431122006263; http://dx.doi.org/10.1016/j.applthermaleng.2022.118679; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131040604&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359431122006263; https://dx.doi.org/10.1016/j.applthermaleng.2022.118679
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know