Decentralized biomass-based Brayton-Stirling power cycle with an air gap membrane distiller for supplying electricity, heat and clean water in rural areas
Applied Thermal Engineering, ISSN: 1359-4311, Vol: 254, Page: 123889
2024
- 1Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ensuring access to essential services, such as clean water and electricity, is a key challenge for achieving sustainable development goals in rural areas. This study proposes a novel Brayton-Stirling combined cycle-based cogeneration system for utilizing locally available biomass waste to generate both electricity and clean water. The system employs an externally fired gas turbine, a Stirling engine, and an air–gap membrane distiller. Four operation modes—parallel-powered, fully-fired, straightforward, and by-pass—were modeled for their efficiency and output. Four operation modes can be switched by two three-way valves. Sunflower husk, identified as the most effective biomass source, enabled the system to achieve up to 160 kW of electricity and 0.7 m 3 /h of freshwater. The electrical and exergy efficiencies of the system peaked in the parallel-power mode, offering a practical solution for enhancing rural sustainability. Moreover, the by-pass mode maximized water production, highlighting its effectiveness in addressing water scarcity along with energy generation. Through a case study, the cogeneration system has demonstrated its capability in satisfying both rural electricity and water demands throughout the day by controlling the combination of different operation modes and parameters. Therefore, it provides a promising solution for advancing rural electrification and water purification in rural areas.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359431124015576; http://dx.doi.org/10.1016/j.applthermaleng.2024.123889; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197783149&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359431124015576; https://dx.doi.org/10.1016/j.applthermaleng.2024.123889
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know