Bioassays in workers exposed to long time random intakes
Applied Radiation and Isotopes, ISSN: 0969-8043, Vol: 180, Page: 110057
2022
- 2Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Workers who are occupationally exposed to radioactive aerosols are usually subjected to periodic controls of internal contamination by performing bioassays (whole body or partial body monitoring and measurement of excreta samples). The intakes are also estimated by using Static Air Samples (SAS). These measurements are used to estimate the radioactive intakes of the workers. A typical assumption is the workers are chronically (constant) exposed for long periods of time. However, the intakes are random and there are also periods without any exposure (weekends, holidays, etc.). The method presented here considers both facts. Simulations help to choose the most appropriate method of evaluation to minimize the statistical uncertainties in the intake. It has been applied to evaluate workers exposed to UO2 aerosols for a long time (30 years or more for most of them) in the same working area (sintering). Results of measurements of uranium in urine and daily intakes (from SAS) of these workers have been used. For this evaluation, the new Occupational Intakes of Radionuclides (OIR) biokinetic models of the International Commission on Radiological Protection (ICRP) for uranium have been solved. For some workers the evaluation gives a significative deviation between the intake estimated from urine samples and the intake estimated using the SAS values, supporting the idea that the physiological standard parameters of the reference worker are not always applicable. The computations have been implemented in the BIOKMOD code.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0969804321004486; http://dx.doi.org/10.1016/j.apradiso.2021.110057; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120899700&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34896900; https://linkinghub.elsevier.com/retrieve/pii/S0969804321004486; https://dx.doi.org/10.1016/j.apradiso.2021.110057
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know