Shifts in soil bacterial communities associated with the potato rhizosphere in response to aromatic sulfonate amendments
Applied Soil Ecology, ISSN: 0929-1393, Vol: 63, Page: 78-87
2013
- 11Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Desulfonation is an important process in the sulfur cycle, through which organic sulfur compounds are mineralized, releasing S. Desulfonating bacteria are known to respond to inorganic S soil amendments. However, the extent to which these communities shift as a response to the addition of organic sulfur in the soil remains elusive. Here, we investigated how amendments of soil with inorganic or organic sulfur compounds influence the bacterial communities associated with potato, in a microcosm experiment. The soil was amended with two doses of linear alkylbenzene sulfonate (LAS), here used as a model aromatic sulfonate compound, or with sulfate. Degradation of LAS was observed already at the young plant stage, as in all treatments 10- to 50-fold reductions of the initial (background) LAS concentrations were noted. Quantitative PCR analyses showed no significant effects of treatment on the bacterial abundances, which tended to increase from the young plant to the flowering stages of plant development. The bacterial community structures, determined via PCR-DGGE, were strongly affected by the presence of plants. This rhizosphere effect became more apparent at the flowering stages. Both the bacterial and β-proteobacterial community structures were affected by the presence of LAS, but dose-related effects were not observed. LAS also caused significant changes in the community structures, as compared to those in inorganic sulfate amended soil. Sulfate did not influence the bacterial community structures and only affected the β-proteobacterial ones at the flowering stage. Surprisingly, the presence of LAS did not exert any significant effect on the abundance of the Variovorax asfA gene, although clone libraries revealed a dominance of Variovorax types in the rhizosphere, especially in the high-level LAS treatment. Our results suggest that rhizosphere communities are key players in LAS degradation in soils, and that desulfonator Variovorax spp. plays a minor role in the mineralization of aromatic sulfonates in soil cropped with potato.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0929139312002272; http://dx.doi.org/10.1016/j.apsoil.2012.09.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84871045090&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0929139312002272; https://dx.doi.org/10.1016/j.apsoil.2012.09.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know