Soil organic matter and microbial community responses to semiarid croplands and grasslands management
Applied Soil Ecology, ISSN: 0929-1393, Vol: 141, Page: 30-37
2019
- 48Citations
- 107Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Livestock integration in cropping systems and conversion of croplands into grazing lands has been increasingly considered to improve agricultural sustainability, yet their roles in soil health and resilience are not clear due to the complex interactions of soil, climate, and agricultural systems. A study was conducted to evaluate the effects of cropland and grassland management systems on soil organic carbon (SOC) and total nitrogen (N) across the soil profile (0–20, 20–40, 40–60, and 60–80 cm) and microbial community size, structure, and activity in the soil surface (0–20 cm) as indicators of soil health. Cropland systems compared included conventional-tilled winter-grazed cropland (CTGC) and no-tilled and strip-tilled croplands (NTC and STC) without livestock grazing. Grassland systems included grazed grassland (GGL) and ungrazed grassland (UGL). Grassland soils accumulated 18% greater SOC and 13% greater total N than cropland soils in the 0–80 cm profile. Microbial community size (sum of ester-linked fatty acid methyl esters [El-FAME]) in the surface 0–20 cm was 90% greater, and enzyme activities were 131–155% greater in the grasslands than in the croplands. Within grasslands, cattle ( Bos taurus ) grazing increased microbial community size by approximately 42%, which was mainly due to greater fatty acid methyl esters (FAME) markers for gram-positive bacteria (51%) and Actinobacteria (73%). Grazed cropland had 95% more β‑glucosaminidase activity than ungrazed croplands. This study suggests light grazing and grassland restoration has potential to improve soil health and resilience through an increase in SOC and microbial community responses related to nutrient cycling.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0929139318308928; http://dx.doi.org/10.1016/j.apsoil.2019.05.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065392167&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0929139318308928; https://api.elsevier.com/content/article/PII:S0929139318308928?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0929139318308928?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.apsoil.2019.05.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know