PlumX Metrics
Embed PlumX Metrics

Bias voltage effect on the structure and property of chromium copper–diamond-like carbon multilayer films fabricated by cathodic arc plasma

Applied Surface Science, ISSN: 0169-4332, Vol: 256, Issue: 24, Page: 7490-7495
2010
  • 25
    Citations
  • 0
    Usage
  • 22
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    25
    • Citation Indexes
      25
  • Captures
    22

Article Description

Chromium copper–diamond-like carbon (Cr:Cu)-DLC films were deposited onto silicon and by cathodic arc evaporation process using chromium (Cr) and copper (Cu) target arc sources to provide Cr and Cu in the Me-DLC. Acetylene reactive gases were the carbon source and activated at 180 °C at 13 mTorr, and a substrate bias voltage was varied from −50 V to −200 V to provide the (Cr:Cu)-DLC structure. The structure, interface, and chemical bonding state of the produced film were analyzed by transmission electron microscope (TEM), IR Fourier transform (FTIR) spectra, and X-ray photoelectron spectroscopy (XPS). The results showed that the Cr-containing a-C:H/Cu coatings exhibited an amorphous layer of DLC:Cr layer and a crystalline layer of Cu multilayer structure. The profiles of sp 3 /sp 2 (XPS) ratios corresponded to the change of microhardness profile by varying the pressure of the negative DC bias voltage. These (Cr:Cu)-DLC coatings are promising materials for soft substrate protective coatings.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know