Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles
Applied Surface Science, ISSN: 0169-4332, Vol: 290, Page: 267-273
2014
- 107Citations
- 100Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The catalytic oxidation of volatile organic compounds such as benzene, toluene, ethylbenzene, and o -xylene (BTEX) over novel Pt/carbon nanotube (CNT) catalysts fabricated by a molecular-level mixing method was investigated at temperatures ranging from 40 to 150 °C. The Pt/CNT interface was probed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS) to elucidate the binding nature of the Pt nanoparticle-CNT surface. The breakthrough curves for multi-component mixtures show displacement effects, in which adsorbates exhibit interaction forces that are sufficiently to displace weakly bounded substances during adsorption. Catalytic oxidation was conducted using a BTEX concentration ranging from 100 to 500 ppmv in air at volume hour space velocities (VHSVs) of approximately 7.5 × 10 4 h −1 –3.4 × 10 5 h −1. The light-off curves were very steep, and complete oxidation was realized at temperatures as low as 115 °C with 30 wt% Pt/CNT, well below the temperatures required using previously studied Pt-based catalysts. The oxidation activity was presumably promoted because of the higher surface BTEX concentration afforded by the adsorption capability of multiwalled carbon nanotubes. The catalyst was characterized by its unique hydrophobic property, which facilitated the conversion of BTEX with high activity at relatively low temperatures and was unaffected by moisture in the system.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169433213021442; http://dx.doi.org/10.1016/j.apsusc.2013.11.066; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84891037599&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169433213021442; https://dx.doi.org/10.1016/j.apsusc.2013.11.066
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know