Chemical functionalization and edge doping of zigzag graphene nanoribbon with l -(+)-leucine and group IB elements—A DFT study
Applied Surface Science, ISSN: 0169-4332, Vol: 418, Page: 406-413
2017
- 10Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
First-principles based density functional theory (DFT) calculations have been carried out on the chemically functionalized pure and Cu, Ag and Au doped zigzag graphene nanoribbon (ZGNR(6,0)) with the use of the branched chain amino acid l -(+)-Leucine named as LLZGNR(6,0), LLCuZGNR(6,0), LLAgZGNR(6,0) and LLAuZGNR(6,0) respectively. The structural stability for minimum total energy was confirmed by perturbating the geometry of the relaxed structures. The physical and chemical properties, such as band gap, chemical potential, transmission spectrum, charge transfer, bonding character and Gibb’s free energy of solvation were analysed for all the four systems. It has been observed that the edge doping assisted functionalized systems (LLCuZGNR(6,0), LLAgZGNR(6,0) and LLAuZGNR(6,0)) without the inclusion of spin polarisation are semiconducting in nature. Whereas, barely functionalized system is found to be semi-metallic. An effective space charge polarisation in functionalized graphene nanoribbon has been revealed through charge transfer studies. Hence, it signifies the effective solubility of the nanoribbon in aqueous media. The results indicate the possibility of using such system as nanocarriers in targeted drug delivery applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169433217305652; http://dx.doi.org/10.1016/j.apsusc.2017.02.192; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85014466417&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169433217305652; https://dx.doi.org/10.1016/j.apsusc.2017.02.192
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know