Effect of collector molecular structure on the wettability of gold for froth flotation
Applied Surface Science, ISSN: 0169-4332, Vol: 420, Page: 691-699
2017
- 30Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Molecular dynamics simulations were conducted to evaluate the alteration of the hydrophilic state of gold surfaces caused by the adsorption of collectors with different molecular structures, using the contact angle of water droplets as an evaluation parameter. Four collectors were evaluated: SDS (with twelve hydrogenated carbon atoms), PAX (with five hydrogenated carbon atoms), DTP (with two branched aliphatic chains) and MBT (with an aromatic ring). The contact angle was evaluated for coatings of a monolayer (ML) and for surface densities of 2.89 μmol/m 2 for each collector. For a ML, the hydrophobic effect generated by the aromatic ring of the MBT collector is comparable with the effect of the non-polar short chain of the PAX collector. The increase in hydrophobicity for the gold surfaces achieved by collectors with aliphatic chains is because the water-collector interaction energy is significantly higher (repulsive) than the water-gold interactions (attractive). The lowest increase in hydrophobicity was achieved with the MBT collector, since the carbon-water interaction energy of the aromatic ring is stronger than the interaction with the carbon atoms in the aliphatic chains. The calculated contact angles of the water droplets deviated less than 4% with respect to the experimental values.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169433217315520; http://dx.doi.org/10.1016/j.apsusc.2017.05.197; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020008597&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169433217315520; https://dx.doi.org/10.1016/j.apsusc.2017.05.197
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know