Robust and underwater superoleophobic coating with excellent corrosion and biofouling resistance in harsh environments
Applied Surface Science, ISSN: 0169-4332, Vol: 436, Page: 152-161
2018
- 47Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Underwater superoleophobic surfaces are based on the surface with micro-/nanoscale roughness and hydration layer. But the self-cleaning surfaces are usually mechanically weak and will lose their underwater superoleophobicity when the surfaces are corroded or damaged. In this paper, to overcome these problems, the robust underwater superoleophobic coating (HN/ER-coating) has been fabricated successfully through MPS (methacryloxy propyl trimethoxyl silane)-SiO 2 /PNIPAM ( N -isopropylacryamide) hybrid nanoparticles and epoxy resin (ER) via a simple solution-casting method. The SiO 2 /PNIPAM hybrid nanoparticles can enhance multiscale roughness and excellent abrasion-resistant property, and the epoxy resin can be used as an interlayer between hybrid nanoparticles and substrates to promote the robustness and corrosion resistance of the coating. The obtained coatings have excellent underwater superoleophobicity, and exhibit highly stability in harsh environments (including acid-base, strong ionic strength, mechanical abrasion). Moreover, this coating can provide protective effect on the substrate in corrosive solution, and may also resist bacterial attachment and subsequent biofilm formation because of the presence of high density PNIPAM polymers. Herein, the developed underwater superoleophobic coating can be applied as an effective platform for the applications in underwater instruments, underwater oil transport, marine oil platform and ships.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169433217335080; http://dx.doi.org/10.1016/j.apsusc.2017.11.215; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85037544836&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169433217335080; https://dx.doi.org/10.1016/j.apsusc.2017.11.215
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know