Assembling ZnO and Fe 3 O 4 nanostructures on halloysite nanotubes for anti-bacterial assessments
Applied Surface Science, ISSN: 0169-4332, Vol: 509, Page: 145358
2020
- 37Citations
- 50Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study reports anti-bacterial assessments of ‘halloysite nanotubes (HNTs) surface-tuned with Fe 3 O 4 and ZnO nanostructures (M-HNTs-ZnO)’ against the non-drug resistant pathogenic E. coli and S. aureus, drug-resistant methicillin-resistant S. aureus (MRSA) and their respective biofilms. Naturally occurring clay mineral the halloysite nanotubes (HNTs) are emerging materials in nano-bio-medicines. Fabricating HNTs' tunable surface with anti-bacterial nanomaterials can be a significant application in combating the deadly bacterial infections. SEM, TEM, FT-IR, XPS and VSM analysis corroborated a successful synthesis of M-HNTs-ZnO. The acquired results established the significant anti-bacterial potential of M-HNTs-ZnO against the E. coli, S. aureus and MRSA, respectively. The stepwise modifications made on HNTs enhanced anti-bacterial performance. Detailed SEM image analysis established possible anti-bacterial mechanisms. M-HNTs-ZnO found effective against the successfully established biofilms of S. aureus. The M-HNTs-ZnO applied in repeated anti-bacterial performance against E. coli, S. aureus and MRSA, marked its importance for water-treatments. In conclusion, M-HNTs-ZnO showed significant anti-bacterial properties that can be used in the treatment of infectious diseases. Also, its repeated anti-bacterial capabilities might be applied in water disinfection protocols.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169433220301148; http://dx.doi.org/10.1016/j.apsusc.2020.145358; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078074557&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169433220301148; https://dx.doi.org/10.1016/j.apsusc.2020.145358
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know