Oxygen plasma surface treatment of polymer films—Pellethane 55DE and EPR-g-VTMS
Applied Surface Science, ISSN: 0169-4332, Vol: 536, Page: 147782
2021
- 34Citations
- 42Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A systematic study using a central composite design of experiments (DoE) was performed on the oxygen plasma surface modifications of two different polymers—Pellethane 2363-55DE, which is a polyurethane, and vinyltrimethoxysilane-grafted ethylene-propylene (EPR-g-VTMS), a cross-linked ethylene-propylene rubber. The impacts of four parameters—gas pressure, generator power, treatment duration, and process temperature—were assessed, with static contact angles and calculated surface free energies (SFEs) as the main responses in the DoE. The plasma effects on the surface roughness and chemistry were determined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Through the sufficiently accurate DoE model evaluation, oxygen gas pressure was established as the most impactful factor, with the surface energy and polarity rising with falling oxygen pressure. Both polymers, though different in composition, exhibited similar modification trends in surface energy rise in the studied system. The SEM images showed a rougher surface topography after low pressure plasma treatments. XPS and subsequent multivariate data analysis of the spectra established that higher oxidized species were formed with plasma treatments at low oxygen pressures of 0.2 mbar.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169433220325393; http://dx.doi.org/10.1016/j.apsusc.2020.147782; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090825675&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169433220325393; https://dx.doi.org/10.1016/j.apsusc.2020.147782
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know