PlumX Metrics
Embed PlumX Metrics

Significant improvement of ferroelectricity and reliability in Hf 0.5 Zr 0.5 O 2 films by inserting an ultrathin Al 2 O 3 buffer layer

Applied Surface Science, ISSN: 0169-4332, Vol: 542, Page: 148737
2021
  • 44
    Citations
  • 0
    Usage
  • 42
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    44
    • Citation Indexes
      43
    • Patent Family Citations
      1
      • Patent Families
        1
  • Captures
    42

Article Description

Due to the full compatibility with modern complementary-metal-oxidesemiconductor (CMOS) technology and scalable capability, HfO 2 -based ferroelectric films have been considered as the most potential materials in micro-nano non-volatile memories. However, despite great achievements, the existence of poor interface still poses a great threat to the improve of ferroelectricity and polarization stability. Here, the excellent ferroelectricity and reliability in the 21.6 nm-thick Hf 0.5 Zr 0.5 O 2 (HZO) films are reported through interface modification by inserting an ultrathin Al 2 O 3 (AO) layer using atomic layer deposition method. Improved polarization and stability are achieved in HZO/AO bilayers with the AO thickness below 2.4 nm. When the thickness of AO dielectric layer is 1.6 nm, the maximum remnant polarization reaches 30.19 μC/cm 2 and the leakage current is decreased by 2 ~ 3 orders of magnitude. The strong interface polarization resulted from the electrostatic coupling between HZO and AO films contributes to the improved ferroelectricity of HZO films. Furthermore, the AO layer, as a dielectric capacitor after switching or during non-switching, can block the electron injection from bottom electrode and therefore improve the cycling reliability. This work demonstrates that an inlaid dielectric layer with much lower dielectric constant can significantly enhance the electrical properties of ferroelectric films.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know