A simple and efficient catalyst for Suzuki reaction based on ultra-low palladium chloride supported on ZnO nanowires
Arabian Journal of Chemistry, ISSN: 1878-5352, Vol: 16, Issue: 12, Page: 105343
2023
- 4Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Zinc oxide nanowires were synthesized and impregnated with trace amounts of palladium ions by adsorption, which was then employed as a heterogeneous catalyst in the Suzuki reaction. To obtain an in-depth understanding of the structure and properties of the ZnO nanowires and the resultant catalyst, different analysis techniques were performed. The as-synthesized catalyst demonstrated exceptional efficiency in promoting the reaction between aryl halides and arylboronic acids, enabling the achievement of biphenyl derivatives in high yields ranging between 82% and 99%. The analysis conducted using transmission electron microscopy demonstrated the formation of palladium nanoparticles during the reaction, confirming their role as the active species driving the catalytic transformation. Further investigation was carried out to examine the effect of the support on the catalytic activity of the catalyst. The results indicated that the morphology and crystallographic structure of zinc oxide had a significant impact on the catalytic activity of the prepared catalyst. The catalytic performance of PdCl 2 /ZnO NWs, where palladium chloride immobilized on ZnO nanowires, was found to be exceptional. The catalyst demonstrated the ability to be recovered and reused up to three times without a noticeable decline in its catalytic activity. Additionally, the loading of palladium species could be reduced to 7.6 mol part per million. Remarkably, the catalyst achieved a total turnover number of 130,000 and a turnover frequency of 0.75 s −1.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1878535223008055; http://dx.doi.org/10.1016/j.arabjc.2023.105343; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174617369&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1878535223008055; https://dx.doi.org/10.1016/j.arabjc.2023.105343
Scientific Scholar
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know