PlumX Metrics
Embed PlumX Metrics

Exploring Parkinson-associated kinases for CRISPR/Cas9-based gene editing: beyond alpha-synuclein

Ageing Research Reviews, ISSN: 1568-1637, Vol: 92, Page: 102114
2023
  • 8
    Citations
  • 0
    Usage
  • 15
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Exploring Parkinson-associated kinases for CRISPR/Cas9-based gene editing: beyond alpha-synuclein.

Ageing Res Rev. 2023 Nov 2;92:102114. Authors: Mansour HM, El-Khatib AS PubMed: 37924981 Submit Comment

Review Description

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substania nigra (SN) and is associated with progressive motor impairment. PD is classified into familial and sporadic forms. The first genetic association studies in PD reported the involvement of Synuclein alpha (SNCA) mutations in the pathobiology of familial PD. Subsequent studies suggested mutations in PTEN-induced putative kinase 1 (PINK1), PARKIN, leucine repeat kinase-2 (LRRK2), and DJ-1 causing familial PD. In addition, kinase dysregulation has been embroiled in the pathogenesis of PD. The genome-editing mechanism CRISPR (clustered regularly interspaced short palindromic repeats) has recently influenced industry and scientific discoveries and is expected to expedite neurodegenerative disease research. This review will discuss the structure, function, and history of the CRISPR/Cas9 genome editing system. Moreover, it summarizes genes-encoding kinases involved in PD pathogenesis and targeted by CRISPR/Cas9 technology, including LRRK2, PINK1, Protein kinase C-delta (PKC-γ), and adenosine monophosphate-activated protein kinase (AMPK). We provide an overview of novel kinases to be targeted by the CRISPR/Cas9 system such as G-protein coupled receptor kinases (GRKs), cyclin-G-associated kinases (GAKs), cyclin-dependent kinase 5 (CDK5), Ataxia telangiectasia mutated (ATM), c-ABL, and rearranged during transfection (RET) receptors. Additionally, we will explain the off-target effects of CRISPR/Cas9 system and how to address them. Also, we will shed light on the associated challenges and future directions that are enabling the efficient use of CRISPR/Cas9 technology in kinases research in PD. In conclusion, gene editing, in addition to gene therapy, might be a possible promising strategy for PD therapy.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know