Evaluating machine learning techniques for enhanced glaucoma screening through Pupillary Light Reflex analysis
Array, ISSN: 2590-0056, Vol: 23, Page: 100359
2024
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures14
- Readers14
- 14
Article Description
Glaucoma is a leading cause of irreversible visual field degradation, significantly impacting ocular health. Timely identification and diagnosis of this condition are critical to prevent vision loss. A range of diagnostic techniques is employed to achieve this, from traditional methods reliant on expert interpretation to modern, fully computerized diagnostic approaches. The integration of computerized systems designed for the early detection and classification of clinical indicators of glaucoma holds immense potential to enhance the accuracy of disease diagnosis. Pupillary Light Reflex (PLR) analysis emerges as a promising avenue for glaucoma screening, mainly due to its cost-effectiveness compared to exams such as Optical Coherence Tomography (OCT), Humphrey Field Analyzer (HFA), and fundoscopic examinations. The noninvasive nature of PLR testing obviates the need for disposable components and agents for pupil dilation. This facilitates multiple successive administrations of the test and enables the possibility of remote execution. This study aimed to improve the automated diagnosis of glaucoma using PLR data, conducting an extensive comparative analysis incorporating neural networks and machine learning techniques. It also compared the performance of different data processing methods, including filtering techniques, feature extraction, data balancing, feature selection, and their effects on classification. The findings offer insights and guidelines for future methodologies in glaucoma screening utilizing pupillary light response signals.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2590005624000250; http://dx.doi.org/10.1016/j.array.2024.100359; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200470192&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2590005624000250; https://dx.doi.org/10.1016/j.array.2024.100359
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know