PlumX Metrics
Embed PlumX Metrics

Spatiotemporal Landsat-Sentinel-2 satellite imagery-based Hybrid Deep Neural network for paddy crop prediction using Google Earth engine

Advances in Space Research, ISSN: 0273-1177, Vol: 73, Issue: 10, Page: 4988-5004
2024
  • 5
    Citations
  • 0
    Usage
  • 37
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    5
  • Captures
    37
  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Reports on Networks from Guru Gobind Singh Indraprastha University Provide New Insights (Spatiotemporal Landsat-sentinel-2 Satellite Imagery-based Hybrid Deep Neural Network for Paddy Crop Prediction Using Google Earth Engine)

2024 JUN 18 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Current study results on Networks have been published. According

Article Description

Rice is one of the predominant food sources to fulfill the dietary requirements of well-being in India. Therefore, accurate and timely paddy crop yield prediction is crucial to ensure the food security of the country. In this direction, the present study proposed a hybrid deep-learning method based on Conv-1D and LSTM layers using the classification-derived phenological with meteorological parameters for paddy crop yield prediction. The paddy crop classification has been conducted using high-resolution (10 m) multispectral imagery based on GPS coordinates collected during the paddy field visits to extract the phenological parameters for input to the prediction model. In this context, the efficiency of Random Forest, Naïve Bayes, SVM, and Gradient Tree boost classifiers was assessed. Furthermore, we have also analyzed the accuracy of Landsat-8, Sentinel-1 GRD, and Sentinel-2 satellite imagery in paddy crop classification based on area estimation. The Statistical Abstract of Haryana was utilized to validate the paddy crop area estimation and yield prediction. The classification outcomes showed that the Random Forest method attained the highest accuracy of 96.6 % compared to other GEE-based classifiers. The proposed Hybrid Deep learning approach achieved an RMSE value of 0.219 t/ha compared to CNN, LSTM, CNN-Bi-LSTM, and Regression techniques for crop yield prediction. The study conclusion highlighted that the sentinel-2 satellite imagery performed well and found that the proposed hybrid approach provided an alternative for paddy crop yield prediction.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know