Landslide susceptibility assessment and mapping using new ensemble model
Advances in Space Research, ISSN: 0273-1177, Vol: 74, Issue: 7, Page: 2859-2882
2024
- 3Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Landslides pose significant impact on human life and society such as loss of livelihood, destruction of infrastructure, and damage to natural resources around the world. Due to existing complications in conditional factors of landslide, mapping and predicting landslide occurrences with high accuracy needs more attention. In light of this, we aim to develop an ensemble landslide susceptibility model named as support vector regression–grasshopper optimization algorithm (SVR–GOA). This model is validated along with other landslide susceptibility models such as artificial neural network (ANN), boosted regression tree (BRT), and elastic net models. The present study carried out over the Kalaleh Basin in Iran, in which we selected 140 landslides with 16 conditional factors to construct a geographic database of the region. The multicollinearity analysis was done on the hazard conditioning factors using variance inflation factor and tolerance indices. Similarly, significance of these factors and their association with selected locations were identified through random forest method. The state of the art of the study is implementing SVR-GOA in landslide susceptibility mapping, including this model we use other landslide models such as ANN, BRT, and elastic net for validation and development using the area under the curve (AUC), kappa, and root mean squared error values. Our results show lithology, slope degree, rainfall, topography position index, topography wetness index, surface area, and landuse/landcover were found to be the most influential conditioning factors. We have also observed that, despite accurate prediction, SVR-GOA outperforms the others by showing the highest AUC values around AUC = 0.930 and others show ANN (AUC = 0.833), BRT (AUC = 0.822) and elastic net (AUC = 0.726) respectively. This innovative approach to landslide mapping using SVR-GOA ensembles would enhance the advancement of landslide research at multiple scales.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0273117724005787; http://dx.doi.org/10.1016/j.asr.2024.06.018; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85196663380&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0273117724005787; https://dx.doi.org/10.1016/j.asr.2024.06.018
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know