O2RNet: Occluder-occludee relational network for robust apple detection in clustered orchard environments
Smart Agricultural Technology, ISSN: 2772-3755, Vol: 5, Page: 100284
2023
- 14Citations
- 32Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Michigan State University Researchers Report Recent Findings in Robotics (O2RNet: Occluder-occludee relational network for robust apple detection in clustered orchard environments)
2023 OCT 11 (NewsRx) -- By a News Reporter-Staff News Editor at Robotics & Machine Learning Daily News Daily News -- Investigators discuss new findings
Article Description
Automated apple harvesting has attracted significant research interest in recent years because of its great potential to address the issues of labor shortage and rising labor costs. One key challenge to automated harvesting is accurate and robust apple detection, due to complex orchard environments that involve varying lighting conditions, fruit clustering and foliage/branch occlusions. Apples are often grown in clusters on trees, which may be mis-identified as a single apple and thus causes issues in fruit localization for subsequent robotic harvesting operations. In this paper, we present the development of a novel deep learning-based apple detection framework, called the Occluder-Occludee Relational Network (O2RNet), for robust detection of apples in clustered situations. A comprehensive dataset of RGB images were collected for two varieties of apples under different lighting conditions (overcast, direct lighting, and back lighting) with varying degrees of apple occlusions, and the images were annotated and made available to the public. A novel occlusion-aware network was developed for apple detection, in which a feature expansion structure is incorporated into the convolutional neural networks to extract additional features generated by the original network for occluded apples. Comprehensive evaluations of the developed O2RNet were performed using the collected images, which outperformed 12 other state-of-the-art models with a higher accuracy of 94% and a higher F1-score of 0.88 on apple detection. O2RNet provides an enhanced method for robust detection of clustered apples, which is critical to accurate fruit localization for robotic harvesting.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2772375523001132; http://dx.doi.org/10.1016/j.atech.2023.100284; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85165023528&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2772375523001132; https://dx.doi.org/10.1016/j.atech.2023.100284
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know