TGS1/PIMT knockdown reduces lipid accumulation in adipocytes, limits body weight gain and promotes insulin sensitivity in mice
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, ISSN: 0925-4439, Vol: 1870, Issue: 1, Page: 166896
2024
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
PRIP Interacting protein with Methyl Transferase domain (PIMT/TGS1) is an integral upstream coactivator in the peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional apparatus. PPARγ activation alleviates insulin resistance but promotes weight gain. Herein, we show how PIMT regulates body weight while promoting insulin sensitivity in diet induced obese mice. In vitro, we observed enhanced PIMT levels during adipogenesis. Knockdown of PIMT in 3T3-L1 results in reduced lipid accumulation and alters PPARγ regulated gene expression. Intraperitoneal injection of shPIMT lentivirus in high fat diet (HFD)-fed mice caused reduced adipose tissue size and decreased expression of lipid markers. This was accompanied by significantly lower levels of inflammation, hypertrophy and hyperplasia in the different adipose depots (eWAT and iWAT). Notably, PIMT depletion limits body weight gain in HFD-fed mice along with improved impaired oral glucose clearance. It also enhanced insulin sensitivity revealed by assessment of important insulin resistance markers and increased adiponectin levels. In addition, reduced PIMT levels did not alter the serum free fatty acid and TNFα levels. Finally, the relevance of our studies to human obesity is suggested by our finding that PIMT was upregulated in adipose tissue of obese patients along with crucial fat marker genes. We speculate that PIMT may be a potential target in maintaining energy metabolism, thus regulating obesity.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925443923002624; http://dx.doi.org/10.1016/j.bbadis.2023.166896; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85172242489&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37751782; https://linkinghub.elsevier.com/retrieve/pii/S0925443923002624; https://dx.doi.org/10.1016/j.bbadis.2023.166896
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know