Crystal structure of a novel xylose isomerase from Streptomyces sp. F-1 revealed the presence of unique features that differ from conventional classes
Biochimica et Biophysica Acta (BBA) - General Subjects, ISSN: 0304-4165, Vol: 1864, Issue: 5, Page: 129549
2020
- 7Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef4
- Captures39
- Readers39
- 39
Article Description
Enzymatic isomerization is a promising strategy to solve the problem of xylose fermentation and, consequently, to leverage the production of advanced biofuels and biochemicals. In a previous work, our research group discovered a new strain of Streptomyces with great biotechnological potential due to its ability to produce a broad arsenal of enzymes related to lignocellulose degradation. We applied a multidisciplinary approach involving enzyme kinetics, biophysical methods, small angle X-ray scattering and X-ray crystallography to investigate two novel xylose isomerases, XylA1F1 and XylA2F1, from this strain. We showed that while XylA1F1 prefers to act at lower temperatures and relatively lower pH, XylA2F1 is extremely stable at higher temperatures and presents a higher turnover number. Structural analysis revealed that XylA1F1 exhibits unique properties in the active site not observed in classical XylAs from classes I and II nor in its ortholog XylA2F1. It encompasses the natural substitutions, M86A and T93K, that create an extra room for substrate accommodation and narrow the active-site entrance, respectively. Such modifications may contribute to the functional differentiation of these enzymes. We have characterized two novel xylose isomerases that display distinct functional behavior and harbor unprecedented amino-acid substitutions in the catalytic interface. Our findings contribute to a better understanding of the functional and structural aspects of xylose isomerases, which might be instrumental for the valorization of the hemicellulosic fraction of vegetal biomass.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304416520300398; http://dx.doi.org/10.1016/j.bbagen.2020.129549; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85079143713&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32035160; https://linkinghub.elsevier.com/retrieve/pii/S0304416520300398; https://dx.doi.org/10.1016/j.bbagen.2020.129549
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know