Nano-mechanical properties of living cells expressing constitutively active RhoA effectors
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 403, Issue: 3, Page: 363-367
2010
- 11Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef10
- Captures20
- Readers20
- 20
Article Description
Filamentous actin and myosin-II are major determinants of cell mechanics and are tightly regulated by a small guanosine triphosphatase, RhoA, and its downstream effectors. We examined the effects of constitutively active mutants of RhoA effectors, which have not been reported before, on cortical stiffness of living cells by using scanning probe microscopy, fluorescence microscopy, and truncated mutants of RhoA effectors labeled with a fluorescent protein. Our data indicated that expression of a constitutively active mutant of Dia1, a formin-family actin polymerizer, enhanced cortical stiffness and increased actin filament quantity in cells. Furthermore, expression of a constitutively active mutant of Rho-associated coiled-coil kinase, a myosin-II activator, softened the cell cortex but increased myosin-II activity. Our findings provide new insights into anomalous mechanics of cells, which is a topic of current interest in a variety of biological research fields.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X10020942; http://dx.doi.org/10.1016/j.bbrc.2010.11.036; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78650171055&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/21078298; https://linkinghub.elsevier.com/retrieve/pii/S0006291X10020942; https://dx.doi.org/10.1016/j.bbrc.2010.11.036
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know