Microglial Hv1 exacerbates secondary damage after spinal cord injury in mice
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 525, Issue: 1, Page: 208-215
2020
- 16Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef4
- Captures10
- Readers10
- 10
Article Description
The pathological process of spinal cord injury (SCI) is complex, particularly during secondary damage that triggers a multiphasic glial reaction consisting of both detrimental and beneficial effects. Deletion of a novel voltage-gated proton channel (Hv1) functionally expressed in microglia has been shown to confer neuroprotection during ischemic stroke. Here, we hypothesized that microglial Hv1 may also participate in the process of SCI through modulating glial responses. To test this hypothesis, we employed an SCI model in Hv1-knockout (Hv1 −/− ) and wild type (WT) mice and assessed resulting microglial polarization, accumulation of pro-inflammatory cytokines, astrocytic activation, oligodendrocytic apoptosis, lesion sizes, and demyelinated areas. Compared with post-SCI results in WT mice, post-SCI Hv1 −/− mice exhibited an M2-dominant microglial polarization, decreased accumulation of microglia, and reduced production of pro-inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β). Additionally, Hv1 −/− mice had significantly attenuated reactive astrogliosis and reduced expression of chondroitin sulphate proteoglycans (CSPGs) after SCI. Furthermore, Hv1 deficiency reduced SCI-induced oligodendrocytic apoptosis, demyelinated areas, and cavity formation. Collectively, our results provide the first evidence suggesting that microglial Hv1 may be a multi-mechanism therapeutic target for the treatment of SCI.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X20302722; http://dx.doi.org/10.1016/j.bbrc.2020.02.012; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85079847964&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32087974; https://linkinghub.elsevier.com/retrieve/pii/S0006291X20302722; https://dx.doi.org/10.1016/j.bbrc.2020.02.012
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know